An optimization based empirical mode decomposition scheme
نویسندگان
چکیده
The empirical mode decomposition (EMD) has been developed by N.E. Huang et al. in 1998 as an iterative method to decompose a nonlinear and nonstationary univariate function additively into multiscale components. These components called intrinsic mode functions (IMFs) are constructed such that they are approximately orthogonal to each other with respect to the L2 inner product. Moreover, the components allow for a definition of instantaneous frequencies through complexifying each component by means of the application of the Hilbert transform. This approach via analytic signals, however, does not guarantee that the resulting frequencies of the components are always non-negative and, thus, physically meaningful, and that the amplitudes can be interpreted as envelopes. In this paper, we formulate an optimization problem which takes into account important features desired of the resulting EMD. Specifically, we propose a data-adapted iterative method which minimizes in each iteration step a smoothness functional subject to inequality constraints involving the extrema. In this way, our method constructs a sparse data-adapted basis for the input function as well as a mathematically stringent envelope for the function. Moreover, we present an optimization-based normalization to extract instantaneous frequencies from the analytic function approach. We present corresponding algorithms together with several examples.
منابع مشابه
Blind Voice Separation Based on Empirical Mode Decomposition and Grey Wolf Optimizer Algorithm
Blind voice separation refers to retrieve a set of independent sources combined by an unknown destructive system. The proposed separation procedure is based on processing of the observed sources without having any information about the combinational model or statistics of the source signals. Also, the number of combined sources is usually predefined and it is difficult to estimate based on the ...
متن کاملJournal of Computational and Applied Mathematics Manuscript Draft Title: an Optimization Based Empirical Mode Decomposition Scheme Title: an Optimization Based Empirical Mode Decomposition Scheme an Optimization Based Empirical Mode Decomposition Scheme
The empirical mode decomposition (EMD) has been developed by N.E. Huang et al. in 1998 as an iterative method to decompose a nonlinear and nonstationary univariate function additively into multiscale components. These components called intrinsic mode functions (IMFs) are constructed such that they are approximately orthogonal to each other with respect to the L2 inner product. Moreover, the com...
متن کاملA Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملEmpirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation
This paper presents an empirical mode decomposition (EMD) based adaptive filter (AF) for channel estimation in OFDM system. In this method, length of channel impulse response (CIR) is first approximated using Akaike information criterion (AIC). Then, CIR is estimated using adaptive filter with EMD decomposed IMF of the received OFDM symbol. The correlation and kurtosis measures are used to sel...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملAN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION
This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Computational Applied Mathematics
دوره 240 شماره
صفحات -
تاریخ انتشار 2013